1945年,技术史上划时代的天才阿兰·图灵提出了所谓的"仿真系统",他写了一份详细的文件,想制造一种没有固定的指令系统的计算机。它能模拟各种不同指令系统的计算机的函数。
这份文件公布于1972年,此时大家才知道:图灵在二战结束时就开启了后来被称为"人工智能"领域的研究,而且他已经开始注意人的神经网络和计算机器可能的联系。
1950年,图灵来到曼彻斯特大学任教,并负责曼大的自动计算机项目。就在1950年10月,他发表了另一篇题为《机器能思考吗?》 的论文。这篇论文里,图灵第一次提出了"机器思维"。他有条理地反驳机器不能思维的看法。他还把对机器智能的判断变成一个行为主义范畴的问题。【 详情 】
1956年8月,在美国汉诺斯小镇的达特茅斯学院,约翰·麦卡锡、马文·闵斯基、克劳德·香农、艾伦·纽厄尔、赫伯特·西蒙等人发起了第一次用机器模拟人的智力的大讨论。这些名字后来在学界都是响当当的。
会议开了两个月,没有共识,但会议讨论的内容有了一个名字:人工智能。所以也有人把1956年看作是人工智能元年。之后,随着大批智者扑向这一新领域,人工智能像喷气式飞机一样骤然升空。
一开始,有人用计算机程序代替人类进行自动推理来证明了数学定理。在达特茅斯会议上,纽厄尔和西蒙展示了他们的程序:"逻辑理论家"可以独立证明出《数学原理》第二章的38条定理;1963年,它已证明该章的全部52条定理。【 详情 】
一开始人工智能就显现出光明前景,学者们没有理由不乐观。1958年,纽厄尔和西蒙自信地说,不出10年,计算机将会成为世界象棋冠军,证明重要的数学定理,谱出优美的音乐。照这样的速度发展下去,2000年人工智能就能超过人类。
可事实没那么简单。1965年,机器定理证明遇到瓶颈:计算机推了数十万步也无法证明两个连续函数之和仍是连续函数。萨缪尔的跳棋程序也无法进一步战胜世界冠军。
1960年代计算机技术爆发时,大家估计人工智能不超过十年就能实现。但后来人工智能技术的发展之难,让很多科学家放弃了这个领域。后来学界也将人工智能分为两种:难以实现的强人工智能和可以尝试的弱人工智能。
强人工智能是科幻电影里常见的那种,可以认为它就是人。【 详情 】
1988年,人工智能系统深思闯入国际象棋界。它是IBM研发的,每秒考虑70万步棋。1991年,深思II战平了澳大利亚国际象棋冠军。
1996年,深思的升级版深蓝挑战人类国际象棋世界冠军,如日中天的加里·卡斯帕罗夫2∶4落败。一年后的5月11日,深蓝以3.5∶2.5的成绩战胜了卡斯帕罗夫。这两次比赛都引发了全球关注,最终让人工智能重新赢得世界的注意力。
2011年2月,在美国一个著名的电视问答节目《危险》中,IBM公司的沃森(Watson)系统战胜了人类选手,成为深蓝后另一个里程碑。这个节目是各种知识的问答,主持人给出一些线索,选手则要猜出主持人所讲的东西。自然语言理解对机器是很难的,因为涉及到语言的隐含意思,各种比喻和歧义。【 详情 】
前几天结束的阿尔法狗对抗李世石,最终电脑笑到了最后,为什么人工智能这么厉害?靠的是神经网络进行深度学习。
所谓神经网络研究,可追溯到1943年。当时,沃伦·麦卡洛克和沃尔特·匹兹提出了单个神经元的计算模型。1957年,弗兰克·罗森布拉特扩充了麦卡洛克-匹兹模型,在神经元上加入了学习算法,并称之为"感知机"。它根据模型的输出,与人们希望模型的输出之间的误差,调整权重来学习。
感知机根据输出效果的好坏来调整自己的神经网络,这跟人的大脑是相同的原理。神经网络学派给机器学习指出了一条路。1974年,杰夫·辛顿提出,用多个感知机连接成一个网络,它就能解决任何问题;配合以反向传播算法。【 详情 】